


	(C) A solution of K_2SO_4 and NH_4OH							
		(D) A solution of <i>PhCOO</i>	(D) A solution of <i>PhCOOK</i> and <i>PhCOOH</i>					
	5.	If $20 ml$ of $0.1 M NaOH$ is added to $30 ml$ of $0.2 M CH_3 COOH(pK_a = 4.74)$. Find pH of resulting solution :-						
		(A) 4.44 (B)) 5.48	(C) 4.74	(D) 6.44			
	6.	A certain buffer solution contains equal concentration of X^- and HX. The K_a						
		for HX is 10^{-8} . The pH of	-					
		(A) 3 (B)) 8	(C) 11	(D) 14			
	7.	. The required amount of precipitation of <i>AgBr</i> in						
		$AgBr = 5 imes 10^{-13}$)						
		(A) $1.19 \times 10^{-9} g$ (B)) $4 imes 10^{-11}g$	(C) $5.95 imes 10^{-10} g$	(D) $2.97 imes 10^{-10} g$			
	8. If K_{sp} of CaF_2 at $25 {}^{o}C$ is 1.7×10^{-10} , the combination amongst the following which gives a precipitate of CaF_2 is							
		(A) $1 imes 10^{-2}~M~Ca^{2+}$ and	$1 imes 10^{-5}~M~F^-$					
		(B) $1 imes 10^{-4}~M~Ca^{2+}$ and	$1 imes 10^{-4}~M~F^-$					
		(C) $1 imes 10^{-3} M \ Ca^{2+}$ and	$1 imes 10^{-5}~M~F^-$					
		(D) $1 imes 10^{-2}~M~Ca^{2+}$ and	$1 imes 10^{-3}~M~F^-$					
	9.	The following equilibrium exists in an aqueous solution of hydrogen sulphide :						
		$H_2S \rightleftharpoons H^+ + HS^-$						
		If dilute <i>HCl</i> is added to		tion of H_2S without a	any change in			
		temperature						
		(A) The equilibrium const						
		(B) The concentration of		vill dograage				
		(C) The concentration of (D) The concentration of		will decrease				
ľ	10.	• The solubility product • experimental temperatur						
		(A) 2×10^{-4} moles per litr		मस्य पज	C 11			
		(B) 6×10^{-6} moles per litr		- 3				
		(C) 1.2×10^{-5} moles per li						
		(D) 8×10^{-4} moles per litr						
1	11	-		ancient ODMNO				
I		$~~0.1~M,~60~ml~NH_4Cl~(K_h=$ equivalence point is	is utrated	ayamst 0.2 M NaO.	a, pa at $\frac{1}{3}$			
) 8.699	(C) 7.301	(D) 6.301			

19. The stoichiometry and solubility product of a salt with the solubility curve given below is, respectively

	3 2 2 1 1 2 1 1 2 3 (X]/mM	→				
	(A) $X_2Y, 2 imes 10^{-9} M^3$	(B) $\mathrm{XY}_2, 1 \times 10^{-9} \mathrm{~M}^3$	(C) $\mathrm{XY}_2, 4 imes 10^{-9} \ \mathrm{M}^3$	(D) $\mathrm{XY}, 2 imes 10^{-6} \ \mathrm{M}^3$		
20.	Addition of sodium hydroxide solution to a weak acid (<i>HA</i>) results in a buffer of $pH6$. If ionisation constant of <i>HA</i> is 10^{-5} , the ratio of salt to acid concentration in the buffer solution will be					
24	(A) 4:5	(B) 1:10	(C) 10:1	(D) 5:4		
21.	What is the pH of a 10					
	(A) 4	(B) 9	(C) 10	(D) 9.6		
	An acidified solution of $0.05MZn^{2+}$ is saturated with $0.1MH_2S$. What is the minimum molar concentration (M) of H^+ required to prevent the precipitation of ZnS ? Use $K_{sp}(ZnS) = 1.25 \times 10^{-22}$ and Overall dissociation constant of H_2S , $K_{NET} = K_1K_2 = 1 \times 10^{-21}$ (A) 0.10 (B) 0.15 (C) 0.20 (D) 0.25 When $100 \ mL$ of $1.0 \ M \ HCl$ was mixed with $100 \ mL$ of $1.0 \ M \ NaOH$ in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ}C$ was measured for the beaker and its contents (Expt. 1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant ($-57.0 \ kJ \ mol^{-1}$), this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. 2), $100 \ mL$ of $2.0 \ M$ acetic acid ($K_a = 2.0 \times 10^{-5}$) was mixed with $100 \ mL$ of $1.0 \ M \ NaOH$ (under identical conditions to Expt. 1) where a temperature rise of $5.6^{\circ}C$ was measured. (Consider heat capacity of all solutions as $4.2Jg^{-1}K^{-1}$ and density of all solutions as $1.0 \ gmL^{-1}$) 1. Enthalpy of dissociation (in $kJmol^{-1}$) of acetic acid obtained from the Expt. 2					
	is					
	(A) 1.0 (B) 10.0 (C) 24.5 (D) 51.4 2. The pH of the solution after Expt. 2 is (A) 2.8 (B) 4.7 (C) 5.0 (D) 7.0 Give the answer question 1 and 2.					
	(A) (A,B)	(B) (<i>B</i> , <i>D</i>)	(C) (<i>B</i> , <i>C</i>)	(D) (A, C)		

24.	24. A solution which is $10^{-3}M$ each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with $10^{-16}M$ sulphide ion. If K_{sp} of MnS , FeS , ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first								
	(A) FeS	(B) <i>MgS</i>	(C) <i>HgS</i>	(D) ZnS					
25.	The compound insolu (A) Calcium oxide								
	(B) Calcium carbonat	e							
	(C) Calcium oxalate								
	(D) Calcium hydroxide								
26.	. By adding a strong acid to the buffer solution, the $pH_{ m o}$ of the buffer solution								
	(A) Remains constant	t	(B) Increases						
	(C) Decreases		(D) Becomes zero						
27.	Which of the followin	n <mark>g i</mark> s more <mark>solub</mark> le in ar	nmonia						
	(A) AgCl	(B) <i>AgBr</i>	(C) Agl	(D) None of these					
28.	Which of the followin	n <mark>g</mark> is not a Bronsted aci	d						
	(A) $CH_3NH_4^+$	(B) <i>CH</i> ₃ <i>COO</i> ⁻	(C) <i>H</i> ₂ <i>O</i>	(D) <i>HSO</i> ⁻ ₄					
29.	According to Bronste (A) Base (B) Acid	d law, water is a/an	VTIO						
	(C) Acid and base both								
	(D) Salt								
30.	With reference to protonic acids, which of the following statements is correct								
	(A) PH_3 is more basic than NH_3								
	(B) PH_3 is less basic than NH_3								
	(C) PH_3 is equally basic as NH_3								
	(D) PH_3 is amphoter	ic while NH_3 is basic							
31.	31. In the equilibrium $HClO_4 + H_2O \Rightarrow H_2O^+ + ClO_4^-$ (A) $HClO_4$ is the conjugate acid of H_2O (B) H_2O is the conjugate acid of H_3O^+								
	(C) H_3O^+ is the conju	gate base of H_2O							
	(D) ClO_4^- is the conju								
32.	An example for a stro	ong electrolyte is							
	(A) Urea	-	(B) Ammonium hydro	xide					
	(C) Sugar		(D) Sodium acetate						

33. An electrolyte
(A) Gives complex ions in solution
(B) Dissolves in water to give ions
(C) Is ionized in the solid state
(D) Generates ions on passing electric current
34. The *pH* of 0.05 *M* solution of dibasic acid is
(A) 1 (B) 2 (C) 3 (D) 4
35. The solubility of *Sb₂S₃* in water is
$$1.0 \times 10^{-5}$$
 mol/litre at 208 *K*. What will be its
solubility product
(A) 108×10^{-26} (B) 1.0×10^{-25} (C) 144×10^{-25} (D) 126×10^{-24}
36. The solubility product of 1×10^{-5} is 1.44×10^{-4} at 100° C. The solubility of silver
chloride in boiling water may be
(A) 0.72×10^{-4} *M* (B) 1.20×10^{-2} *M* (C) 80° (D) 0.5 *M HCOOH*,
37. What will be hydrogen ion concentration in moles *litre*⁻¹ of a solution, whose
pH is 4.58
(A) 2.63×10^{-5} (B) 3.0×10^{-5} (C) 4.68 (D) None of these
38. During titration of acetic acid with aq. *NaOH* solution, the neutralisation graph
has a vertical line. This line indicates
pH
(a) alkaline nature of equivalence
(b) depends on experimental proceeding
39. Given
(*HCN* [aq] + *Ha*₂O(*t*) \Rightarrow *Ha*₂O⁺(aq) + *CN* [aq]
(*HCN* [aq] + *Ha*₂O(*t*) \Rightarrow *Ha*₂O⁺(aq) + *CN* [aq]
(*HCN* [aq] + *Ha*₂O(*t*) \Rightarrow *Ha*₂O⁺(aq) + *CN* [aq]
(*H* $S^{n} = 1.6 \times 10^{-6}$
These equilibria show the following order of the relative base strength
(A) *OH* $> H_{2}O > CN$ (B) *OH* $^{-} > CN > H_{2}O$
(C) $H_{2}O > CN^{-} > OH^{-}$ (D) *CN* $^{-} > H_{2}O > OH^{-}$

40. Identify each species in the following equilibrium according to the code : SA =stronger acid ; SB = stronger base ; WA = weaker acid ; WB = weaker base. The pK_a of $(CH_3)_2NH$ is 36; the pK_a of CH_3OH is 15.2 $CH_{3}OH + (CH_{3})_{2}NH \rightleftharpoons CH_{3} - O^{-}CH_{3} - N^{+}H - CH_{3}$ (A) 1 = WA, 2 = WB (B) 1 = WB, 2 = WA (C) 1 = SA, 2 = SB (D) 1 = SB, 2 = SA[40] * SECTION - B 41. pH of 0.1 M solution of a weak acid (HA) is 4.50. It is neutralised with NaOH solution to decrease the acid content to half pH of the resulting solution 42. *pH* of *NaCl* solution is 43. At $25 \,^{\circ}C$, the dissociation constant of CH_3COOH and NH_4OH in aqueous solution are almost the same. The pH of a solution $0.01 N CH_3 COOH$ is 4.0 at $25 \,^{\circ}C$. The pH of $0.01 \, N \, N H_4 OH$ solution at the same temperature would be 44. The pH of the solution: 5 mL of $\frac{M}{5}$, HCl + 10 mL of $\frac{M}{10}$ NaOH is 45. If the *pH* of a solution is 4.0 at $25 \circ C$, its *pOH* would be $(K_w = 10^{-14})$ 46. 20 mL of 0.1 M NaOH is added to 50 mL of 0.1 M acetic acid solution. The pH of the resulting solution is $\dots \times 10^{-2}$ (Nearest integer) Given : pKa $(CH_3COOH) = 4.76$ $\log 2 = 0.30$ $\log 3 = 0.48$ 47. What is the percent ionization (α) of a 0.01 *M* HA solution ?% ($K_a = 10^{-6}$) 48. The *pH* of the solution containing 10 *ml* of 0.1 N NaOH and 10 *ml* of 0.05 N H_2SO_4 would be 49. The degree of hydrolysis of a salt of weak acid and weak base in its 0.1 Msolution is found to be 50%. If the molarity of the solution is 0.2 M, the percentage hydrolysis of the salt should be.....% 50. At $25 \,{}^{o}C$, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH, will Mg^{2+1} ions start precipitating in the form of $Mg(OH)_2$ from a solution of $0.001 M Mg^{2+}$ ions? ----- *****Best Of Your Knowledge***** -----