Time: 1 Hour 30 Minute

STD 10 Maths Chapter Based Test

Total Marks: 50

Section A

* Choose the right answer from the given options. [1 Marks Each]

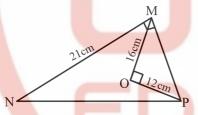
[7]

1. If in two triangles ABC and DEF, $\frac{AB}{DE} = \frac{BC}{FE} = \frac{CA}{FD}$, then:

(A)

 α

(C)

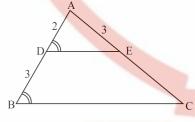

(D)

 \triangle FDE $\sim \triangle$ ABC \triangle BCA $\sim \triangle$ FDE

 $\triangle FDE \sim \triangle CAB$

 $\triangle CBA \sim \triangle FDE$

2. In the given figure, O is a point inside a $\triangle MNP$ such that $\angle MOP = 90^\circ, OM = \textbf{16}cm$ and OP = 12cm. If MN = 21cm and $\angle NMP = 90^\circ$ then NP = ?


(A) 25cm

(B) 29cm

(C) 33cm

(D) 35cm

3. In the given figure if $\angle ADE = \angle ABC$, $\angle ADE = \angle ABC$, then CE is equal to:

(A) 3.

(B) $\frac{9}{2}$

(C) 2.

(D) 5.

4. In $\triangle ABC$, if AB = 16cm, BC = 12cm and AC = 20cm, then $\triangle ABC$ is:

(A) Acute-angled.

(B) Right-angled.

(C) Obtuse-angled.

(D) Not possible.

5. If ABC is a right triangle right-angled at B and M, N are the mid-points of AB and BC respectively, then $4(AN^2 + CM^2) =$

(A) $4AC^2$

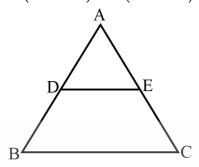
(B) $5AC^2$

(C) $\frac{5}{4}$ AC²

(D) $6AC^2$

6. $\triangle ABC \sim \triangle DEF$ and their perimeters are 32cm and 24cm respectively. If AB = 10cm then DE =?

a. 8cm


b. 7.5cm

c. 15cm

d. $5\sqrt{3}$ cm

7.

In an equilateral $\triangle ABC$, D is the midpoint of AB and E is the midpoint of AC. Then, $ar(\triangle ABC): ar(\triangle ADE)=?$

- a. 2:1
- b. 4:1
- c. 1:2
- d. 1:4
- * A statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.
- 8. **DIRECTION:** In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

Assertion: In $\triangle ABC$, $AB = 6\sqrt{3}$, AC = 12cm and BC = 6cm then 2B = 90°.

Reason: If in atriangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

- a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- c. Assertion (A) is true but reason (R) is false.
- d. Assertion (A) is false but reason (R) is true
- 9. **DIRECTION:** In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

Assertion: $\triangle ABC \sim \triangle DEF$ such that ar $(\triangle ABC) = 36 \text{cm}^2$? and ar $\triangle DEF = 49 \text{cm}^2$?. Then, the ratio of their corresponding sides is 6:7

Reason: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

- a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- c. Assertion (A) is true but reason (R) is false.
- d. Assertion (A) is false but reason (R) is true
- 10. **DIRECTION:** In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

Assertion: D and E are points on the sides AB and AC respectively of a $\triangle ABC$ such that DE || BCthen the value of x is 4, when AD = x cm, DB = (x - 2)cm, AE = (x + 2) cm and EC = (x - 1)cm.

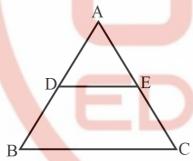
Reason: If a line is parallel to one side of a triangle then it divides the other two sides in the same ratio.

- a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- c. Assertion (A) is true but reason (R) is false.
- d. Assertion (A) is false but reason (R) is true

* State whether the following sentences are True or False. [1 Marks Each]

[2]

- Write the truth value (T/F) of the following statements:
 Two polygons are similar, if their corresponding angles are proportional.
- 12. Write the truth value (T/F) of the following statements: Any two similar figures are congruent.


* Answer the following questions in one sentence. [1 Marks Each]

[2]

13. D, E and F are the mid-points of the sides AB, BC and CA respectively of \triangle ABC.

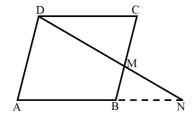
Find
$$\frac{\mathrm{ar}(\Delta \mathrm{DEF})}{\mathrm{ar}(\Delta \mathrm{ABC})}$$

14. In fig., DE || BC, AD = 1cm and BD = 2cm. what is the ratio of the ar $\triangle ABC$ to the ar $(\triangle ADE)$?

Section B

* Given section consists of questions of 2 marks each.

[10]

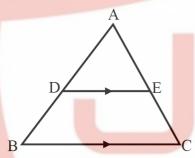

- 1. Diagonal AC and BD of a trapezium ABCD with AB | DC intersect each other at point O. Using a similarity criterion for two triangles, show that $\frac{OA}{OC} = \frac{OB}{OD}$.
- 2. In $\triangle ABC$, points P and Q are on CA and CB, respectively such that CA = 16cm, CP = 10cm, CB = 30cm and CQ = 25cm. Is PQ || AB?
- 3. Triangle ABC and DEF are similar.

If area $ig(riangle ABCig)=9 {
m cm}^2,$ area $ig(riangle DEFig)=64 {
m cm}^2$ and DE = 5.1cm, find AB.

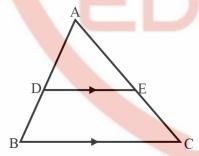
- 4. If a $\triangle ABC$, AD is the bisector of $\angle A$, Meeting side BC at D. If BD = 2.5cm, AB = 5cm and AC = 4.2cm, find DC.
- 5. M is a point on the side BC of a parallelogram ABCD. DM when produced meet AB produced at N. Prove that.

i.
$$\frac{DM}{MN} = \frac{DC}{BN}$$

ii.
$$\frac{DN}{DM} = \frac{AN}{DC}$$



Section C

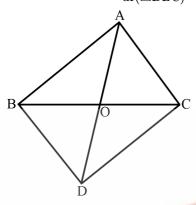

* Given section consists of questions of 3 marks each.

[12]

- 1. If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = \frac{3}{4}$, then write $Area(\triangle ABC) : Area(\triangle DEF.)$
- 2. D and E are points on the sides AB and AC respectively of a $\triangle ABC$ such that DE || BC: AD = (7x 4)cm, AE = (5x 2)cm, DB = (3x + 4)cm and EC = 3x cm.

3. D and E are points on the sides AB and AC respectively of a $\triangle ABC$ such that DE || BC: If AD = 3.6cm, AB = 10cm and AE = 4.5cm, find EC and AC.

4. In the given figure, O is a point inside a $\triangle PQR$ such that $\triangle PQR=90^{\circ}, OP=6cm$ and OR=8cm. If PQ=24cm and QR=26cm, prove that $\triangle PQR$ is right-angled.

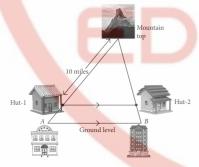

Section D

* Given section consists of questions of 5 marks each.

[10]

1.

In the given figure, $\triangle ABC$ and $\triangle DBC$ have the same base BC. If AD and BC intersect at O, prove that $\frac{ar(\triangle ABC)}{ar(\triangle DBC)} = \frac{AO}{DO}$.


2. In a trapezium ABCD, it is given that AB || CD and AB = 2CD. Its diagonals AC and BD intersect at the point O such that $ar(\triangle AOB) = 84cm^2$. Find $ar(\triangle COD)$.

Section E

* Case study based questions

[4]

1. Two hotels are at the ground level on either side of a mountain. On moving a certain distance towards the top of the mountain two huts are situated as shown in the figure. The ratio between the distance from hotel B to hut -2 and that of hut -2 to mountain top is 3:7.

Based on the above information, answer the following questions.

- i. What is the ratio of the perimeters of the triangle formed by both hotels and mountain top to the triangle formed by both huts and mountain top?
- ii. What is the ratio of areas of two parts formed in the complete figure?
- iii. The distance between the hotel A and hut -1 is?
 Or

If the horizontal distance between the hut -1 and hut -2 is 8miles, then the distance between the two hotels is ?