

JARS EDUCATION

Shop No. 1,2,3,4 Ayodhya Nagari, Hendre Pada, Badlapur (West), Thane, Maharashtra - 421503

Practice Paper

- 7. The greater the energy of a photon, the
 - (A) longer the wavelength and the higher the frequency
 - (B) longer the wavelength and the lower the frequency

40893 : 99672 40893 83696 11389

99671 69853

(C)	shorter	the	wavelength	and the	higher	the	frequency	,
(\mathcal{L})	Shorter	the	wavelength	and the	ingrici	the	nequency	

- (D) shorter the wavelength and the lower the frequency
- 8. A hypothetical electromagnetic wave is show below.

(Image)

integer) [Given : $\pi=3.14$]

The frequency of the wave is $\mathbf{x} imes 10^{19}$ Hz. $x = \dots$ (nearest integer)

	1.5pm						
	(A) 5	(B) 7	(C) 9	(D) 10			
9.	A 150 <i>Watt</i> bulb emit emitted as light. How	s light of wavelength many light photons ar	$6600\overset{o}{A}$ and only 8% of e emitted by the bulb p	the energy is per second?			
	(A) 4×10^{10}	(B) 3.24×10^{10}	(C) 4.23×10^{20}	(D) 3×10^{20}			
10.). The frequency of radiation emitted when the electron falls from $n = 4$ to $n = 1$ in a hydrogen atom will be (Given ionization energy of $H = 2.18 \times 10^{-18} J$ atom ⁻¹ and $h = 6.625 \times 10^{-34} Js$)						
	(A) $3.08 imes 10^{15} s^{-1}$	(B) $2.00 imes 10^{15} s^{-1}$	(C) $1.54 imes 10^{15} s^{-1}$	(D) $1.03 \times 10^{15} s^{-1}$			
11.	The energy of second Bohr orbit of the hydrogen atom is $-328~kJ~mol^{-1}$, hence the energy of fourth Bohr orbit would be $kJ { m mol}^{-1}$						
	(A) -41	(B) -1312	(C) -164	(D) -82			
12.	According to the Bohr theory, which of the following transitions in th <mark>e hyd</mark> rogen atom will giv <mark>e rise</mark> to the least energet <mark>ic phot</mark> on ?						
	(A) $n=6$ to $n=1$	(B) $n=5$ to $n=4$	(C) $n=6$ to $n=5$	(D) $n=5$ to $n=3$			
13.	The ratio of the veloc <mark>ity of electron</mark> i <mark>n the g</mark> round state of hydrogen atom and its velocity in second excited state of He^+ ion is						
	(A) 3.5	(B) 1.5	(C) 2	(D) 2.5			
14.	When the electron o energy, we get a serie (A) Balmer series	f hydrogen ato <mark>m retu</mark> es of lines in the spectr	rn to <i>L</i> shell from sh um. This series is called (B) Lyman series	ells of higher d			
	(C) Brackett series		(D) Paschen series				
15.	For Li^{+2} ion, $r_2:r_5$ will be						
	(A) 9:25	(B) 4:25	(C) 25:4	(D) 25 : 9			
16.	The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is						
	equal to $\frac{h^2}{xma_0^2}$. The va	lue of $10x$ is (a) is radius of Bohr's o	rbit) (Nearest			

	(A) 1010	(B) 6135	(C) 3155	(D) 3845			
17.	Photon of the nmaximum frequeney will be absorbed in the transition (for H atom):						
	(A) From $n=1$ to $n=$	4	(B) From $n=2$ to $n=1$				
	(C) From $n=2$ to $n=$	3	(D) From $n=3$ to $n=2$				
18.	In Bohr series of lines of hydrogen spectrum, the third line from the red end						
	corresponds to which	one of the following i	nter-orbit in an atom o	f hydrogen			
	(A) $4 ightarrow 1$	(B) $2 \rightarrow 5$	(C) $3 \rightarrow 2$	(D) $5 ightarrow 2$			
19.	The De-broglie λ of electron in the 2^{st} Bohr orbit is						
	(A) $4\pi r_1$	(B) πr_1	(C) $2\pi r_1$	(D) $6\pi r_1$			
20.	What accelerating potential must be imparted to a proton beam to give it an						
	effective $\lambda = 0.05 \overset{o}{A}$.	$72 \times 10^{-27} kc$					
	$(V = 35 \text{ voll}) (m_p = 1.0)$ (Δ) $4.95 \times 10^6 \text{ V}$	$(\mathbf{B}) 4.05 \times 10^5 V$	(C) $2.475 \times 10^6 V$	(D) $2.475 \times 10^5 V$			
21	The minimum uncort	ainty in the speed of	(c) 2.410 \times 10 \vee				
21.	region of length $2a_{c}$	anity in the speed of	an electron in an one	umensional			
	(Where $a_0 = \text{Bohr radius } 52.9 pm$) is kms^{-1}						
	(Given : Mass of electron = $9.1 \times 10^{-31} kg$, Planck's constant $h = 6.63 \times 10^{-34} Js$)						
	(A) 548	(B) 547	(C) 546	(D) 545			
22.	Which of the following elements outermost orbit's last electron has magnetic quantum number $m = 0$?						
	(A) Na	(B) <i>O</i>	(C) <i>Cl</i>	(D) N			
23.	How many electrons can be accommodated in a sub-shell for which $n = 3, l = 1$						
	(A) 8	(B) 6	(C) 18	(D) 32			
24.	In a given atom no two electrons can have the same values for all the four quantum numbers. This is called (A) Hund's rule						
	(B) Aufbau's principle						
	(C) Uncertainty principle						
	(D) Pauli's exclusion principle						
25.	The correct set of four quantum numbers for the valence electron of rubidium atom $(Z = 37)$ is						
	(A) 5,1,1,+1/2	(B) $6,0,0,+1/2$	(C) $5,0,0,+1/2$	(D) $5,1,0,+1/2$			
26.	The structure of external most shell of inert gases is						
	(A) s^2p^3	(B) s^2p^6	(C) s^1p^2	(D) $d^{10}s^2$			

32. Which of the following sets of quantum numbers is not allowed?

(A)
$$n = 3, 1 = 2, m_1 = 0, s = +\frac{1}{2}$$

(B) $n = 3, 1 = 2, m_1 = -2, s = +\frac{1}{2}$
(C) $n = 3, 1 = 3, m_1 = -3, s = -\frac{1}{2}$

- (D) $n = 3, 1 = 0, m_1 = 0, s = -\frac{1}{2}$
- 33. Given below are two statements:

Statement-*I*: The orbitals having same energy are called as degenerate orbitals. Statement-*II*: In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals. In the light of the above statements, choose the most appropriate answer from the options given

- (A) Statement-*I* is true but Statement-*II* is false
- (B) Both Statement-*I* and Statement-*II* are true.
- (C) Both Statement-*I* and Statement-*II* are false
- (D) Statement-*I* is false but Statement-*II* is true
- 34. The maximum probability of finding an electron in the d_{xy} orbital is
 - (A) Along the x- axis
 - (B) Along the y- axis
 - (C) At an angle of 45° from the x and y- axes
 - (D) At an angle of 90° from the x and y- axes
- 35. Orbital is
 - (A) Circular path around the nucleus in which the electron revolves
 - (B) Space around the nucleus where the probability of finding the electron is maximum

(C) 18

(D) 32

- (C) Amplitude of electrons wave
- (D) None of these
- 36. The maximum number of electrons that can be accommodated in the M^{th} shell is
 - (A) 2
- 37. The molecule having one unpaired electron is(A) *NO*(B) *CO*(C) *CN*

(B) 8

- 38. Which of the following quantum number is not obtained by the solution of Schrodinger wave equation
 - (A) magnetic quantum number
 - (B) principal quantum number
 - (C) spin quantum number
 - (D) azimuthal quantum number

- 39. The electronic configurations of Cr^{24} and Cu^{29} are abnormal
 - (A) Due to extra stability of exactly half filled and exactly fully filled sub shells
 - (B) Because they belong to d- block
 - (C) Both the above
 - (D) None of the above
- 40. Choose the pair whose ions have the similar electronic configuration
 - (A) Lithium and sodium
 - (B) Potassium and calcium
 - (C) Sodium and potassium
 - (D) Both (a) and (c)

* SECTION - B

- **41.** What is the maximum number of electrons which can be accommodated in an atom in which the highest principal quantum number value is 4
- **42.** The electronic configuration of a dipositive ion M^{2+} is 2,8,14 and its atomic mass is 56. The number of neutrons in the nucleus would be :
- ^{43.} Assume that the radius of the first Bohr orbit of hydrogen atom is 0.6Å. The radius of the third Bohr orbit of He^+ is picometer. (Nearest Integer)
- 44. The wavelength of an electron and a neutron will become equal when the velocity of the electron is x times the velocity of neutron. The value of x is (Nearest Integer)(Mass of electron is $9.1 \times 10^{-31} kg$ and mass of neutron is $1.6 \times 10^{-27} kg$)
- 45. The longest wavelength of light that can be used for the ionisation of lithium atom (*Li*) in its ground state is $x \times 10^{-8} m$. The value of x is (Nearest Integer) (Given : Energy of the electron in the first shell of the hydrogen atom is $-2.2 \times 10^{-18} J$; $h = 6.63 \times 10^{-34} Js$ and $c = 3 \times 10^8 ms^{-1}$)
- 46. The value of magnetic quantum number of the outermost electron of ${\rm Zn}^+ {\rm ion}$ is
- 47. The number of photons emitted by a monochromatic (single frequency) infrared range finder of power 1 mW and wavelength of 1000 nm, in 0.1 *second* is $x \times 10^{13}$. The value of x is

(Nearest integer)

 $\left({
m h}=6.63 imes 10^{-34}\,{
m Js},{
m c}=3.00 imes 10^{8}~{
m ms}^{-1}
ight)$

48. The number of orbitals associated with quantum numbers $n=5,\ m_s=+rac{1}{2}$ is

[40]

- 49. The atomic masses of He and Ne are 4 and 20 a.m.u., respectively. The value of the de Broglie wavelength of He gas at $-73^{\circ}C$ is "M" times that of the de Broglie wavelength of Ne at $727^{\circ}C$. M is
- 50. The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be nm (Rydberg constant $= 1.097 \times 10^7 m^{-1}$)

----- ** BEST OF YOUR KNOWLEDGE ** -----

