

Jars Education

Shop no. 2,3,4 hendre pada Badlapur west thane

* A statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.

8. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: The linear equations x - 2y - 3 = 0 and 3x + 4y - 20 = 0 have exactly one solution.

Reason: The linear equations 2x + 3y - 9 = 0 and 4x + 6y - 18 = 0 have a unique solution.

- a. both assertion and reason are correct and reason is correct explanation for assertion
- b. both assertion and reason are correct but reason is correct explanation for assertion
- c. assertion is correct but reason is false
- d. both assertion and reason are false
- 9. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: The graph of the linear equations 3x + 2y = 12 and 5x - 2y = 4 gives a pair of intersecting lines.

Reason: The graph of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$

givesa b pair of intersecting lines if $rac{a_1}{a_2}
eq rac{b_1}{b_2}$

- a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- c. Assertion (A) is true but reason (R) is false.
- d. Assertion (A) is false but reason (R) is true
- 10. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: If a pair of linear equations is consistent, then the lines are intersecting or coincident

Reason: Because the two lines definitely have a solution.

- a. both assertion and reason are correct and reason is correct explanation for assertion
- b. both assertion and reason are correct but reason is correct explanation for assertion
- c. assertion is correct but reason is false
- d. both assertion and reason are false
- * Answer the following questions in one sentence. [1 Marks Each]

- [4]
- ^{11.} On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the pair of linear equation is consistent, or inconsistent: 5x 3y = 11; -10x + 6y = -22
- ^{12.} On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the pair of linear equations are consistent, or inconsistent: $\frac{4}{3}x + 2y = 8$; 2x + 3y = 12.

13.	Do the following equations represent a pair of coincident lines? Justify your answer: -2x - 3y = 1 and 6y + 4x = -2
14.	Are the following pair of linear equations consistent? Justify your answer: $2ax + by = a and 4ax + 2by - 2a = 0; a, b \neq 0$ Section B
*	Given section consists of questions of 2 marks each. [10]
1.	Is the pair of linear equation consistent/inconsistent? If consistent, obtain the solution graphically: $x - y = 8$; $3x - 3y = 16$
2.	Is the pair of linear equation con <mark>sistent/inconsistent? If cons</mark> istent, obtain the solution graphically: 2x – 2y – 2 <mark>= 0; 4x – 4y –</mark> 5 = 0
3.	Solve the pair of linear equations by substitution method: $\sqrt{2}x - \sqrt{3}y = 0$ $\sqrt{3}x - \sqrt{8}y = 0$
4.	Very-Short and Short-Answer Questions: Show that the system $2x + 3y - 1 = 0$, $4x + 6y - 4 = 0$ has no solution.
5.	Very-Short and Short-Answer Questions: A number consists of two digits whose sum is 10. If 18 is subtracted from the number, its digits are reversed. Find the number.
	Section C
*	Given section consists of questions of 3 marks each. [12]
1.	Very-Short and Short-Answer Questions: Write the number of solutions of the following pair of linear equations: 2x + 3y = 7 (k - 1)x + (k + 2)y = 3k
2.	Solve for x and y: 2x + 3y + 1 = 0, $\frac{7-4x}{3} = y$
3.	Very-Short and Short-Answer Questions: Solve $rac{3}{x+y}+rac{2}{x-y}=2$ and $rac{9}{x+y}-rac{4}{x-y}=1$
4.	Find the value of a and b for which the following systems of linear equations has an infinite number of solutions: 2x + 3y = 7, (a + b)x + (2a - b)x = 21
	(a + b)x + (2a - b)y = 21 Section D
*	Given section consists of questions of 5 marks each. [10]
1.	A man walks a certain distance with certain speed. If he walks $\frac{1}{2}$ km an hour faster, he takes 1 hour less. But, if he walks 1km an hour slower, he takes 3 more hours. Find the
	[3]

distance covered by the man and his original rate of walking.

2. Solve the following systems of equations:

$$\frac{\frac{3}{x} - \frac{1}{y}}{\frac{2}{x} + \frac{3}{y}} = 5$$

Section E

* Case study based questions

1. Mr Manoj Jindal arranged a lunch party for some of his friends. The expense of the lunch are partly constant and partly proportional to the number of guests. The expenses amount to 650 for 7 guests and 970 for 11 guests.

[4]

Denote the constant expense by $\mathbf{\xi}$ x and proportional expense per person by $\mathbf{\xi}$ y and answer the following questions.

- i. What is the system of linear equations representing both the situations?
- ii. Represent both the situations algebraically.
- iii. What is the Proportional expense for each person? Or

The fixed (or constant) expense for the party is?

|| ज्ञानं एव श्रमस्य पुंजः ||